Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Rev. esp. cardiol. (Ed. impr.) ; 77(2): 129-137, feb. 2024. tab, graf
Artigo em Espanhol | IBECS | ID: ibc-230480

RESUMO

Introduction and objectives A new computed tomography-derived fractional flow reserve (CT-FFR) technique with a “coarse-to-fine subpixel” algorithm has been developed to generate precise lumen contours. The aim of this study was to assess the diagnostic performance of this new CT-FFR algorithm for discriminating lesion-specific ischemia using wire-based FFR ≤ 0.80 as the reference standard in patients with coronary artery disease. Methods This prospective, multicenter study screened 330 patients undergoing coronary CT angiography (CCTA) and invasive FFR (median interval 2 days) from 6 tertiary hospitals. CT-FFR was evaluated in a blinded fashion with a “coarse-to-fine subpixel” algorithm for lumen contour. Results Between March 2019 and May 2020, we included 316 patients with 324 vessels. There was a good correlation between CT-FFR and invasive FFR (r=0.76, P<.001). The diagnostic sensitivity, specificity, and accuracy on a per-vessel level were 95.3%, 89.8%, and 92.0% for CT-FFR, and 96.4%, 26.4%, and 53.1% for CCTA>50% stenosis, respectively. CT-FFR showed improved discrimination of ischemia compared with CCTA alone overall (AUC, 0.95 vs 0.74, P<.001) and in intermediate (AUC, 0.96 vs 0.62, P<.001) and “gray zone” lesions (AUC, 0.88 vs 0.61, P<.001). The diagnostic specificity, accuracy, and AUC for CT-FFR (71.9%, 82.8%, and 0.84) outperformed CCTA (9.4%, 48.3%, and 0.66) in patients or in vessels with severe calcification (all P<.05). Conclusions CT-FFR with a new “coarse-to-fine subpixel” algorithm showed high performance in identifying hemodynamically significant stenosis. The diagnostic performance of CT-FFR was superior to that of CCTA in intermediate lesions, “gray zone” lesions, and severely calcified lesions (AU)


Introducción y objetivos Se ha desarrollado una nueva técnica basada en tomografía computarizada para la evaluación de la reserva fraccional de flujo (TC-RFF) con un algoritmo de subpíxel «de grueso a fino» para generar contornos luminales precisos. El objetivo de este estudio es evaluar el rendimiento diagnóstico de este nuevo algoritmo de TC-RFF para discriminar la isquemia específica de lesión utilizando la evaluación invasiva de la RFF ≤ 0,80 como referencia en pacientes con enfermedad coronaria. Métodos Este estudio prospectivo y multicéntrico evaluó a 330 pacientes sometidos a angiografía coronaria no invasiva con TC (ACTC) y evaluación invasiva de la RFF (mediana del intervalo, 2 días) en 6 hospitales terciarios. La TC-RFF se evaluó a ciegas con un algoritmo de subpíxel «de grueso a fino» para la evaluación de la luz. Resultado Entre marzo de 2019 y mayo de 2020, se incluyó a un total de 316 pacientes con 324 vasos. Hubo una buena correlación entre la TC-RFF y la evaluación invasiva de la RFF (r=0,76; p<0,001). La sensibilidad, la especificidad y la exactitud diagnóstica por vaso fueron, respectivamente, del 95,3, el 89,8 y el 92,0% para la TC-RFF y del 96,4, el 26,4 y el 53,1% para la ACTC para las estenosis>50%. La TC-RFF mostró mejor discriminación de la isquemia que la ACTC sola en general (ABC=0,95 frente a ABC=0,74; p<0,001) y en lesiones intermedias (ABC=0,96 frente a ABC=0,62; p<0,001) y en «zona gris» (ABC=0,88 frente a ABC=0,61; p<0,001). La especificidad, la exactitud y el ABC diagnóstica de la TC-RFF (el 71,9%, el 82,8% y 0,84) superaron las de la ACTC (el 9,4%, el 48,3% y 0,66) en pacientes o vasos con calcificación grave (todos, p<0,05). Conclusiones La TC-RFF con un algoritmo de subpíxel «de grueso a fino» proporcionó un alto rendimiento en la identificación de estenosis hemodinámicamente significativas. El rendimiento diagnóstico de la TC-RFF fue superior al de la ACTC en lesiones intermedias, de «zona gris» y con calcificación grave (AU)


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doença da Artéria Coronariana/diagnóstico por imagem , Estenose Coronária/diagnóstico por imagem , Angiografia por Tomografia Computadorizada/métodos , Constrição Patológica , Angiografia Coronária/métodos , Valor Preditivo dos Testes , Estudos Prospectivos , Microtomografia por Raio-X , Algoritmos
2.
Nat Sci Sleep ; 16: 99-109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344451

RESUMO

Purpose: Previous studies demonstrated that there was abnormal functional connectivity (FC) in the amygdala subregions in obstructive sleep apnea (OSA), which was associated with cognitive function. However, it is not clear whether these abnormalities can be improved after continuous positive airway pressure (CPAP) treatment. Therefore, the aim of this research was to investigate the changes in FC of amygdala subregions with other brain regions after 6 months of CPAP treatment (post-CPAP) in patients with OSA. Patients and Methods: Fifteen OSA patients underwent Magnetic Resonance Imaging prior to CPAP treatment (pre-CPAP) and following CPAP treatment. The amygdala was divided into six subregions, including bilateral dorsal amygdala (DA), medial amygdala (MA) and ventral amygdala (VA). The FC was calculated by using the amygdala subregions as seeds. A paired sample T-test was employed to assess alterations in the amygdala subregions FC of pre-CPAP and post-CPAP OSA patients, and correlation analysis was then conducted to evaluate the association between the changed FC and clinical assessment. Results: Compared to pre-CPAP OSA patients, post-CPAP OSA patients displayed an enhanced FC between the left DA and the right posterior cingulate cortex (PCC), whereas the FC between the left MA and the right postcentral gyrus, and between the right MA and the left middle frontal gyrus, decreased. Moreover, significant correlation between the FC value of left DA-right PCC and Hamilton Anxiety Inventory scores was found in pre-CPAP OSA patients. Conclusion: Altered FC between the amygdala subregions and other brain regions in OSA patients induced by CPAP treatment was related to cognitive, emotional, and sensorimotor function. Our study found altered FC between amygdala subregions and cognitive and motor-related brain regions in post-CPAP OSA patients, providing potential neuroimaging indicators for CPAP treatment.

3.
Mitochondrial DNA B Resour ; 9(1): 46-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38197052

RESUMO

Butyriboletus hainanensis, a macrofungus belonging to the Boletaceae family, is named after its collection location on Hainan Island, China. However, little is known about its mitochondrial genome and its phylogenetic relationship with other boletes. In this study, we utilized next-generation sequencing technology to sequence the mitochondrial genome of Bu. hainanensis. Our findings revealed that the mitochondrial genome of this species is presumably a circular DNA molecule spanning 36,592 bp. It consists of 15 protein-coding genes, 27 transfer RNA genes, and two ribosomal RNA genes. The base composition of the mitochondrial genome is as follows: A (36.64%), C (12.22%), G (11.73%), and T (39.41%), with a GC content of 23.95%. Additionally, a phylogenetic tree was constructed based on 22 mitochondrial genomes, which provided valuable insights into the phylogenetic relationships of Bu. hainanensis with other boletes for the first time.

4.
Rev Esp Cardiol (Engl Ed) ; 77(2): 129-137, 2024 Feb.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-37453536

RESUMO

INTRODUCTION AND OBJECTIVES: A new computed tomography-derived fractional flow reserve (CT-FFR) technique with a "coarse-to-fine subpixel" algorithm has been developed to generate precise lumen contours. The aim of this study was to assess the diagnostic performance of this new CT-FFR algorithm for discriminating lesion-specific ischemia using wire-based FFR ≤ 0.80 as the reference standard in patients with coronary artery disease. METHODS: This prospective, multicenter study screened 330 patients undergoing coronary CT angiography (CCTA) and invasive FFR (median interval 2 days) from 6 tertiary hospitals. CT-FFR was evaluated in a blinded fashion with a "coarse-to-fine subpixel" algorithm for lumen contour. RESULTS: Between March 2019 and May 2020, we included 316 patients with 324 vessels. There was a good correlation between CT-FFR and invasive FFR (r=0.76, P<.001). The diagnostic sensitivity, specificity, and accuracy on a per-vessel level were 95.3%, 89.8%, and 92.0% for CT-FFR, and 96.4%, 26.4%, and 53.1% for CCTA>50% stenosis, respectively. CT-FFR showed improved discrimination of ischemia compared with CCTA alone overall (AUC, 0.95 vs 0.74, P<.001) and in intermediate (AUC, 0.96 vs 0.62, P<.001) and "gray zone" lesions (AUC, 0.88 vs 0.61, P<.001). The diagnostic specificity, accuracy, and AUC for CT-FFR (71.9%, 82.8%, and 0.84) outperformed CCTA (9.4%, 48.3%, and 0.66) in patients or in vessels with severe calcification (all P<.05). CONCLUSIONS: CT-FFR with a new "coarse-to-fine subpixel" algorithm showed high performance in identifying hemodynamically significant stenosis. The diagnostic performance of CT-FFR was superior to that of CCTA in intermediate lesions, "gray zone" lesions, and severely calcified lesions. Clinical Trial Register: NCT04731285.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Humanos , Estenose Coronária/diagnóstico , Constrição Patológica , Estudos Prospectivos , Doença da Artéria Coronariana/diagnóstico , Tomografia Computadorizada por Raios X , Angiografia Coronária/métodos , Angiografia por Tomografia Computadorizada/métodos , Isquemia , Algoritmos , Valor Preditivo dos Testes , Estudos Retrospectivos
5.
Front Endocrinol (Lausanne) ; 14: 1239644, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795360

RESUMO

Objective: We aimed to analyze the risk of cardiac rupture (CR) in aged diabetic patients with acute ST-segment elevated myocardial infarction (STEMI) who were followed up for one month, and analyze its independent risk factors. Methods: A total of 3063 aged patients with first onset STEMI admitted to Beijing Anzhen Hospital from January 2001 to December 2020 were retrospectively included. There were 2020 patients without diabetes mellitus (DM) and 1043 patients with DM. We used propensity scores matching (PSM) method to balance baseline exposure factors between patients with or without DM, and all were divided the DM group (1043 cases) and the non-DM group (1043 cases) after the PSM. The primary outcome was CR (the composite rate of papillary muscle rupture, ventricular septum perforation, free wall rupture), which was diagnosed based on clinical manifestations and/or echocardiographic findings. Kaplan-meier survival analyses and log-rank test was used to evaluate the risk of CR between the two groups, and Cox regression analysis was used to evaluate the independent risk factors for CR. Results: After PSM, the baseline clinical data were similar between the DM and non-DM group (all P>0.05). However, level of glycated hemoglobin was significantly higher in the DM group (P<0.05). During 1 month of follow-up, there were 55 (2.64%) cases of CR, most occurred within 48h after admission (40 cases). Among the 55 cases, 11(0.53%) had papillary muscle rupture, 18(0.86%) had ventricular septum perforation, and 26(1.25%) had free wall rupture. Kaplan-meier survival analyses detected that the DM group was associated with significantly increased risk of CR (3.36% vs. 1.92%, HR=1.532, 95% CI: 1.054-2.346, P=0.030), ventricular septum perforation (1.05% vs. 0.67%, HR=1.464, 95% CI: 1.021-2.099, P=0.038) and free wall rupture (1.63% vs. 0.86%, HR=1.861, 95% CI: 1.074-3.225, P=0.027) than those in the non-DM group. Among the 2031 aged STEMI patients without CR, 144 cases (6.90%, 144/2086) died; and among the 55 patients with CR, 37 cases (1.77%, 37/2086) died due to CR. Therefore, twenty percent (20.44%, 37/181) of death was due to CR. Multivariate Cox regression analysis indicated that DM (HR=1.532, 95%CI: 1.054-2.346), age (HR=1.390, 95%CI: 1.079-1.791), female (HR=1.183, 95%CI: 1.049-1.334), troponin I (HR=1.364, 95%CI: 1.108-1.679), brain natriuretic peptide (HR=1.512, 95%CI: 1.069-2.139), revascularization (HR=0.827, 95%CI: 0.731-0.936) and ß-receptor blocker (HR=0.849, 95%CI: 0.760-0.948) were independent risk factors of CR (all P<0.05). Conclusion: DM as well as a few other factors, are independent determinants of CR. CR is not a rare event among the aged STEMI patients and twenty percent of deaths are due to CR. However, large sample-sized studies are warranted to confirm these findings.


Assuntos
Diabetes Mellitus , Ruptura Cardíaca , Infarto do Miocárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Idoso , Humanos , Feminino , Estudos Retrospectivos , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/diagnóstico , Ruptura Cardíaca/epidemiologia , Ruptura Cardíaca/etiologia
7.
Sci Rep ; 13(1): 12302, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516794

RESUMO

Migraine ranks among the most prevalent disorders worldwide, leading to disability and decreased quality of life in patients. Recently, neurogenic inflammation has been recognized as a potential underlying pathology contributing to the migraine pain pathway. Mast cells reside in the meninges and have been implicated in contributing to the pathophysiology of migraine. Here we report for the first time that the mouse Mas-Related G-protein-coupled Receptor B2 (MrgprB2), is expressed on meningeal connective tissue mast cells and contributes to Pituitary Adenylate Cyclase Activating Peptide (PACAP)-induced migraine-like pain behavior. We also found that PACAP was able to dose-dependently lead to enzyme release from human mast cells via activation of MRGPRX2; the human homolog of MrgprB2. Using a transgenic MRGPRX2 mouse, we observed significant increases in PACAP-induced migraine-like pain behavior in MRGPRX2+ mice vs mice lacking the receptor. These results reveal both MrgprB2 and MRGPRX2 as important contributors to neuropeptide-induced migraine pain.


Assuntos
Transtornos de Enxaqueca , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Humanos , Camundongos , Mastócitos , Meninges , Camundongos Transgênicos , Transtornos de Enxaqueca/induzido quimicamente , Proteínas do Tecido Nervoso/genética , Dor , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Qualidade de Vida , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética
8.
Brain Sci ; 13(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37239310

RESUMO

Previous studies have shown that the structural and functional impairments of hippocampal subregions in patients with obstructive sleep apnea (OSA) are related to cognitive impairment. Continuous positive airway pressure (CPAP) treatment can improve the clinical symptoms of OSA. Therefore, this study aimed to investigate functional connectivity (FC) changes in hippocampal subregions of patients with OSA after six months of CPAP treatment (post-CPAP) and its relationship with neurocognitive function. We collected and analyzed baseline (pre-CPAP) and post-CPAP data from 20 patients with OSA, including sleep monitoring, clinical evaluation, and resting-state functional magnetic resonance imaging. The results showed that compared with pre-CPAP OSA patients, the FC between the right anterior hippocampal gyrus and multiple brain regions, and between the left anterior hippocampal gyrus and posterior central gyrus were reduced in post-CPAP OSA patients. By contrast, the FC between the left middle hippocampus and the left precentral gyrus was increased. The changes in FC in these brain regions were closely related to cognitive dysfunction. Therefore, our findings suggest that CPAP treatment can effectively change the FC patterns of hippocampal subregions in patients with OSA, facilitating a better understanding of the neural mechanisms of cognitive function improvement, and emphasizing the importance of early diagnosis and timely treatment of OSA.

9.
Neural Plast ; 2023: 5598047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865671

RESUMO

This study was aimed at investigating the functional connectivity (FC) changes between the insular subregions and whole brain in patients with obstructive sleep apnea (OSA) after 6 months of continuous positive airway pressure (CPAP) treatment and at exploring the relationship between resting-state FC changes and cognitive impairment in OSA patients. Data from 15 patients with OSA before and after 6 months of CPAP treatment were included in this study. The FC between the insular subregions and whole brain was compared between baseline and after 6 months of CPAP treatment in OSA. After 6 months of treatment, OSA patients had increased FC from the right ventral anterior insula to the bilateral superior frontal gyrus and bilateral middle frontal gyrus and increased FC from the left posterior insula to the left middle temporal gyrus and left inferior temporal gyrus. Hyperconnectivity was found from the right posterior insula to the right middle temporal gyrus, bilateral precuneus, and bilateral posterior cingulate cortex, which mainly involved the default mode network. There are changes in functional connectivity patterns between the insular subregions and whole brain in OSA patients after 6 months of CPAP treatment. These changes provide a better understanding of the neuroimaging mechanisms underlying the improvement in cognitive function and emotional impairment in OSA patients and can be used as potential biomarkers for clinical CPAP treatment.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas , Apneia Obstrutiva do Sono , Humanos , Apneia Obstrutiva do Sono/diagnóstico por imagem , Apneia Obstrutiva do Sono/terapia , Encéfalo , Cognição , Córtex Insular
10.
Front Aging Neurosci ; 14: 1009232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325191

RESUMO

Objective: Many studies have explored the neural mechanisms of cognitive impairment in chronic obstructive pulmonary disease (COPD) patients using the functional MRI. However, the dynamic properties of brain functional networks are still unclear. The purpose of this study was to explore the changes in dynamic functional network attributes and their relationship with cognitive impairment in stable COPD patients. Materials and methods: The resting-state functional MRI and cognitive assessments were performed on 19 stable COPD patients and 19 age-, sex-, and education-matched healthy controls (HC). We conducted the independent component analysis (ICA) method on the resting-state fMRI data, and obtained seven resting-state networks (RSNs). After that, the static and dynamic functional network connectivity (sFNC and dFNC) were respectively constructed, and the differences of functional connectivity (FC) were compared between the COPD patients and the HC groups. In addition, the correlation between the dynamic functional network attributes and cognitive assessments was analyzed in COPD patients. Results: Compared to HC, there were significant differences in sFNC among COPD patients between and within networks. COPD patients showed significantly longer mean dwell time and higher fractional windows in weaker connected State I than that in HC. Besides, in comparison to HC, COPD patients had more extensive abnormal FC in weaker connected State I and State IV, and less abnormal FC in stronger connected State II and State III, which were mainly located in the default mode network, executive control network, and visual network. In addition, the dFNC properties including mean dwell time and fractional windows, were significantly correlated with some essential clinical indicators such as FEV1, FEV1/FVC, and c-reactive protein (CRP) in COPD patients. Conclusion: These findings emphasized the differences in sFNC and dFNC of COPD patients, which provided a new perspective for understanding the cognitive neural mechanisms, and these indexes may serve as neuroimaging biomarkers of cognitive performance in COPD patients.

11.
Front Neurosci ; 16: 1002184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340771

RESUMO

Obstructive sleep apnea (OSA), a common respiratory sleep disorder, is often associated with mild cognitive impairment (MCI), which is a precursor stage to Alzheimer's disease (AD). However, the neuroimaging changes in patients with OSA with/without MCI are still under discussion. This study aimed to investigate the temporal variability of spontaneous brain activity in OSA. Fifty-two OSA patients (26 with OSA with MCI (OSA-MCI), 26 OSA without MCI (OSA-nMCI), and 26 healthy controls (HCs) underwent MRI scans and scale questionnaires. A dynamic amplitude of low-frequency fluctuation (dALFF) evaluation was performed to examine the time-varying nature of OSA-MCI and OSA-nMCI. Compared with OSA-MCI, OSA-nMCI had increased dALFF in the posterior cerebellar and right superior frontal gyrus; compared with HCs, OSA-nMCI patients showed increased dALFF in the right posterior cerebellum. A positive correlation between the bilateral posterior cerebellar lobes and right superior frontal gyrus was observed in OSA-MCI patients; however, in OSA-nMCI patients, a positive correlation was observed only between the bilateral posterior cerebellar lobes. The dALFF value of the left posterior cerebellar lobe was positively correlated with the apnea-hypopnea index (AHI), epworth sleepiness scale (ESS) score, and arousal index in OSA-nMCIs, while the dALFF value of the right posterior cerebellum was positively correlated with the AHI and negatively correlated with the lowest oxygen saturation (SaO2). This study argues that OSA-nMCIs and OSA-MCIs exhibit different temporal variabilities in dynamic brain functions, OSA-nMCIs may have variable intermediate states. We concluded that the functional abnormalities of the cerebellar-prefrontal cortex pathway in OSA-MCIs may cause cognitive impairment with OSA.

12.
Front Aging Neurosci ; 14: 1022628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389072

RESUMO

Obstructive sleep apnea (OSA) is the most common sleep disorder worldwide. Previous studies have shown that OSA patients are often accompanied by cognitive function loss, and the underlying neurophysiological mechanism is still unclear. This study aimed to determine whether there are differences in regional homogeneity (Reho) and functional connectivity (FC) across the brain between OSA patients with MCI (OSA-MCI) and those without MCI (OSA-nMCI) and whether such differences can be used to distinguish the two groups. Resting state magnetic resonance data were collected from 48 OSA-MCI patients and 47 OSA-nMCI patients. The brain regions with significant differences in Reho and FC between the two groups were identified, and the Reho and FC features were combined with machine learning methods for classification. Compared with OSA-nMCI patients, OSA-MCI patients showed significantly lower Reho in bilateral lingual gyrus and left superior temporal gyrus. OSA-MCI patients also showed significantly lower FC between the bilateral lingual gyrus and bilateral cuneus, left superior temporal gyrus and left middle temporal gyrus, middle frontal gyrus, and bilateral posterior cingulate/calcarine/cerebellar anterior lobe. Based on Reho and FC features, logistic regression classification accuracy was 0.87; sensitivity, 0.70; specificity, 0.89; and area under the curve, 0.85. Correlation analysis showed that MoCA scale score in OSA patients was significant positive correlation sleep efficiency and negatively correlation with neck circumference. In conclusion, our results showed that the OSA-MCI group showed decreased Reho and FC in specific brain regions compared with the OSA-nMCI group, which may help to understand the underlying neuroimaging mechanism of OSA leading to cognitive dysfunction and may serve as a potential biomarker to distinguish whether OSA is accompanied by cognitive impairment.

13.
Front Aging Neurosci ; 14: 977917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389084

RESUMO

Objective: The purpose of this study was to investigate the dynamic functional network connectivity (FNC) and its relationship with cognitive function in obstructive sleep apnea (OSA) patients from normal cognition (OSA-NC) to mild cognitive impairment (OSA-MCI). Materials and methods: Eighty-two male OSA patients and 48 male healthy controls (HC) were included in this study. OSA patients were classified to OSA-MCI (n = 41) and OSA-NC (n = 41) based on cognitive assessments. The independent component analysis was used to determine resting-state functional networks. Then, a sliding-window approach was used to construct the dynamic FNC, and differences in temporal properties of dynamic FNC and functional connectivity strength were compared between OSA patients and the HC. Furthermore, the relationship between temporal properties and clinical assessments were analyzed in OSA patients. Results: Two different connectivity states were identified, namely, State I with stronger connectivity and lower frequency, and State II with lower connectivity and relatively higher frequency. Compared to HC, OSA patients had a longer mean dwell time and higher fractional window in stronger connectivity State I, and opposite result were found in State II, which was mainly reflected in OSA-MCI patients. The number of transitions was an increasing trend and positively correlated with cognitive assessment in OSA-MCI patients. Compared with HC, OSA patients showed extensive abnormal functional connectivity in stronger connected State I and less reduced functional connectivity in lower connected State II, which were mainly located in the salience network, default mode network, and executive control network. Conclusion: Our study found that OSA patients showed abnormal dynamic FNC properties, which was a continuous trend from HC, and OSA-NC to OSA-MCI, and OSA patients showed abnormal dynamic functional connectivity strength. The number of transformations was associated with cognitive impairment in OSA-MCI patients, which may provide new insights into the neural mechanisms in OSA patients.

14.
Front Neurosci ; 16: 987015, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248662

RESUMO

Purpose: Previous studies found abnormal low-frequency spontaneous brain activity related to cognitive impairment in patients with obstructive sleep apnea (OSA). However, it is unclear if low-frequency spontaneous brain activity is related to specific frequency bands in OSA patients. In this study, we used the amplitude of low-frequency fluctuation (ALFF) method in patients with OSA to explore characteristics of spontaneous brain activity in the classical (0.01-0.1 Hz) and five sub-frequency bands (slow-2 to slow-6) and analyzed the relationship between spontaneous brain activity and clinical evaluation was analyzed. Patients and methods: Resting-state magnetic resonance imaging data and clinical assessments were collected from 52 newly-diagnosed OSA patients and 62 healthy controls (HCs). We calculated the individual group ALFF values in the classical and five different sub-frequency bands. A two-sample t-test compared ALFF differences, and one-way analysis of variance explored interactions in frequency bands between the two groups. Results: ALFF values in the OSA group were lower than those in the HC group in the bilateral precuneus/posterior cingulate cortex, bilateral angular gyrus, left inferior parietal lobule, brainstem, and right fusiform gyrus. In contrast, ALFF values in the OSA group were higher than those in the HC group in the bilateral cerebellum posterior lobe, bilateral superior frontal gyrus, bilateral middle frontal gyrus, left inferior frontal gyrus, left inferior temporal gyrus, and left fusiform gyrus. Some ALFF values in altered brain regions were associated with body mass index, apnea-hypopnea index, neck circumference, snoring history, minimum SaO2, average SaO2, arousal index, oxygen reduction index, deep sleep period naming, abstraction, and delayed recall in specific frequency bands. Conclusion: Our results indicated the existence of frequency-specific differences in spontaneous brain activity in OSA patients, which were related to cognitive and other clinical symptoms. This study identified frequency-band characteristics related to brain damage, expanded the cognitive neuroimaging mechanism, and provided additional OSA neuroimaging markers.

15.
Front Neurol ; 13: 913193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071900

RESUMO

White matter (WM) fiber alterations in patients with obstructive sleep apnea (OSA) is associated with cognitive impairment, which can be alleviated by continuous positive airway pressure (CPAP). In this study, we aimed to investigate the changes in WM in patients with OSA at baseline (pre-CPAP) and 3 months after CPAP adherence treatment (post-CPAP), and to provide a basis for understanding the reversible changes after WM alteration in this disease. Magnetic resonance imaging (MRI) was performed on 20 severely untreated patients with OSA and 20 good sleepers. Tract-based spatial statistics was used to evaluate the fractional anisotropy (FA), mean diffusion coefficient, axial diffusion coefficient, and radial diffusion coefficient (RD) of WM. To assess the efficacy of treatment, 20 patients with pre-CPAP OSA underwent MRI again 3 months later. A correlation analysis was conducted to evaluate the relationship between WM injury and clinical evaluation. Compared with good sleepers, patients with OSA had decreased FA and increased RD in the anterior thalamic radiation, forceps major, inferior fronto-occipital tract, inferior longitudinal tract, and superior longitudinal tract, and decreased FA in the uncinate fasciculus, corticospinal tract, and cingulate gyrus (P < 0.05). No significant change in WM in patients with post-CPAP OSA compared with those with pre-CPAP OSA. Abnormal changes in WM in untreated patients with OSA were associated with oxygen saturation, Montreal cognitive score, and the apnea hypoventilation index. WM fiber was extensively alteration in patients with severe OSA, which is associated with cognitive impairment. Meanwhile, cognitive recovery was not accompanied by reversible changes in WM microstructure after short-term CPAP therapy.

16.
Front Neurosci ; 16: 940721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090274

RESUMO

Background and purpose: Previous studies have found that abnormal local spontaneous brain activity in patients with obstructive sleep apnea (OSA) was associated with cognitive impairment, and dynamic functional connections can capture the time changes of functional connections during magnetic resonance imaging acquisition. The purpose of this study was to investigate the dynamic characteristics of regional brain connectivity and its relationship with cognitive function in patients with OSA and to explore whether the dynamic changes can be used to distinguish them from healthy controls (HCs). Methods: Seventy-nine moderate and severe male OSA patients without any treatment and 84 HCs with similar age and education were recruited, and clinical data and resting functional magnetic resonance imaging data were collected. The dynamic regional homogeneity (dReHo) was calculated using a sliding window technique, and a double-sample t-test was used to test the difference in the dReHo map between OSA patients and HCs. We explored the relationship between dReHo and clinical and cognitive function in OSA patients using Pearson correlation analysis. A support vector machine was used to classify the OSA patients and HCs based on abnormal dReHo. Result: Compared with HCs, OSA patients exhibited higher dReHo values in the right medial frontal gyrus and significantly lower dReHo values in the right putamen, right superior temporal gyrus, right cingulate gyrus, left insula and left precuneus. The correlation analysis showed that the abnormal dReHo values in multiple brain regions in patients with OSA were significantly correlated with nadir oxygen saturation, the oxygen depletion index, sleep period time, and Montreal cognitive assessment score. The support vector machine classification accuracy based on the dReHo difference in brain regions was 81.60%, precision was 81.01%, sensitivity was 81.01%, specificity was 82.14%, and area under the curve was 0.89. Conclusion: The results of this study suggested that there was abnormal dynamic regional spontaneous brain activity in patients with OSA, which was related to clinical and cognitive evaluation and can be used to distinguish OSA patients from HCs. The dReHo is a potential objective neuroimaging marker for patients with OSA that can further the understanding of the neuropathological mechanism of patients with OSA.

17.
Front Neurol ; 13: 1005650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090863

RESUMO

In this study, we aimed to use voxel-level degree centrality (DC) features in combination with machine learning methods to distinguish obstructive sleep apnea (OSA) patients with and without mild cognitive impairment (MCI). Ninety-nine OSA patients were recruited for rs-MRI scanning, including 51 MCI patients and 48 participants with no mild cognitive impairment. Based on the Automated Anatomical Labeling (AAL) brain atlas, the DC features of all participants were calculated and extracted. Ten DC features were screened out by deleting variables with high pin-correlation and minimum absolute contraction and performing selective operator lasso regression. Finally, three machine learning methods were used to establish classification models. The support vector machine method had the best classification efficiency (AUC = 0.78), followed by random forest (AUC = 0.71) and logistic regression (AUC = 0.77). These findings demonstrate an effective machine learning approach for differentiating OSA patients with and without MCI and provide potential neuroimaging evidence for cognitive impairment caused by OSA.

18.
Chem Commun (Camb) ; 58(66): 9194-9197, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35894590

RESUMO

A lithiophilic Sn-Co nano-seed sealed in a nitrogen-doped carbon shell is designed to stabilize lithium metal anodes, in which lithiophilic alloys can regulate lithium deposition behavior and the hollow carbon shell is beneficial to prevent agglomeration. The modified lithium anode can be stable for 1350 h and 400 h under 1 mA cm-2 and 5 mA cm-2 in symmetric cells. The Sn-Co@C@Li||LiFePO4 full cell with a low N/P ratio of 2.12 shows a superior capacity retention of >98% over 250 cycles under 1C.

19.
J Colloid Interface Sci ; 624: 471-481, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35667209

RESUMO

The application of lithium-sulfur batteries are seriously hindered by their poor cycle stability and low sulfur utilization due to their inevitable polysulfide shuttle effect and slow reaction kinetics. Here, Mo2C nanorods that were surface-decorated with metallic-organic framework-derived nitrogen-doped carbon and ultrasmall cobalt nanoparticles (NC-Co@Mo2C) were used as the materials for lithium-sulfur battery cathodes. The prepared NC-Co@Mo2C@S composites had the specific capacity of 1073 mAh·g-1 (0.2 C) and the retained 806 mAh·g-1 after 200 cycles, thus showing excellent discharge specific capacity and cycling stability. The Mo2C nanorods can adsorb lithium polysulfides (LiPSs) through the formation of MoS bonds. Cobalt nanoparticles electrocatalytically accelerated the redox kinetic conversion of LiPSs. Nitrogen doping can effectively reduce the energy potential barrier. The interconnected multidimensional backbone of NC-Co@Mo2C composites contributed to electrolyte permeation, fast electron/Li+ transport, and sufficient volume change buffering. Therefore, the synergistic effect of the adsorption ability of Mo2C nanorods and the catalytic ability of cobalt nanoparticles can effectively improve the sulfur fixation ability of the composites and greatly suppress the shuttle effect.

20.
Front Neurosci ; 16: 850940, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35546892

RESUMO

The hippocampus is involved in various cognitive function, including memory. Hippocampal structural and functional abnormalities have been observed in patients with obstructive sleep apnoea (OSA), but the functional connectivity (FC) patterns among hippocampal subdivisions in OSA patients remain unclear. The purpose of this study was to investigate the changes in FC between hippocampal subdivisions and their relationship with neurocognitive function in male patients with OSA. Resting-state fMRI were obtained from 46 male patients with untreated severe OSA and 46 male good sleepers. The hippocampus was divided into anterior, middle, and posterior parts, and the differences in FC between hippocampal subdivisions and other brain regions were determined. Correlation analysis was used to explore the relationships between abnormal FC of hippocampal subdivisions and clinical characteristics in patients with OSA. Our results revealed increased FC in the OSA group between the left anterior hippocampus and left middle temporal gyrus; between the left middle hippocampus and the left inferior frontal gyrus, right anterior central gyrus, and left anterior central gyrus; between the left posterior hippocampus and right middle frontal gyrus; between the right middle hippocampus and left inferior frontal gyrus; and between the right posterior hippocampus and left middle frontal gyrus. These FC abnormalities predominantly manifested in the sensorimotor network, fronto-parietal network, and semantic/default mode network, which are closely related to the neurocognitive impairment observed in OSA patients. This study advances our understanding of the potential pathophysiological mechanism of neurocognitive dysfunction in OSA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...